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Abstract. We present a new interactive algorithm allowing to solve the
inconsistencies problem, when the preferences of a decision maker can-
not be representable by a numerical function. This algorithm is based on
technics of linear programming and the type of preferences we use are
cardinal information.
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1 Introduction

Decision making aims at helping a decision maker (DM) to select one or more
alternatives among several alternatives. During this process, and in many sit-
uations, it is important for the DM to construct a preference relation over the
set of all alternatives X . Many models have been developed to construct this
preference. Some of them, like utility theory, look for a numerical function with
good properties (arithmetic mean, Choquet integral, belief functions, . . . ) which
is able to represent faithfully the preferences of the DM on X . This representa-
tion requires sometimes to ask to the DM an initial preference on X or when X
is very large, a preferential information on a reference subset X ′ ⊆ X .

In this paper, we ask the DM to give, using pairwise comparisons, a cardinal
information (a preferential information given with preference intensity) on X
and then we test if this preferential information is consistent with a numerical
function. If the test leads to inconsistencies, how to help the DM to modify
his preferences in order to represent his cardinal information? To answer this
question it is desirable to have recommendations understandable by any DM.
This is not true with the different theorems [10,11,12,7] on the representation of
cardinal information by a numerical function. Indeed, these characterizations are
based on the notion of cyclones [5,13] (specific cycles) which is very complex to
understand and to detect. Therefore, an alternative to these theorems is to use
methods of dealing with inconsistencies based on technics of linear programming
[2,8,9].
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We propose a new interactive algorithm for inconsistency management with
cardinal information. Our approach is not in the spirit of the determination
of an irreducible inconsistent system (ISS) [3], but to use simple and intuitive
methods of constraints relaxation when a linear program is infeasible. The rec-
ommendations we suggest to the DM are based on the concepts of augmentation
and reduction of a preference able to causing an inconsistency.

The paper is organized as follows: the next section introduces the basic notions
we need, then we present in Section 3 our algorithm and we end by an illustrative
example.

2 Representation of a Cardinal Information

Let X be a finite set of alternatives (or actions, options). We assume that, given
two alternatives x and y the DM is able to judge the difference of attractiveness
between x and y when he strictly prefers x to y. Like in the MACBETH [1,4]
and GRIP [6] methodologies in Muticriteria Decision Analysis, the difference
of attractiveness will be provided under the form of semantic categories ds,
s = 1, . . . , q defined so that, if s < t, any difference of attractiveness in the class
ds is smaller than any difference of attractiveness in the class dt. MACBETH
approach uses the following six semantic categories: d1 = very weak, d2 = weak,
d3 = moderate, d4 = strong, d5 = very strong, d6 = extreme. If there is no
ambiguity, a category ds will be simply designated by s.

Under these hypotheses, the preferences given by the DM is expressed by the
following relations:

• P = {(x, y) ∈ X × X : the DM strictly prefers x to y}, P is an asymmetric
relation;

• I = {(x, y) ∈ X × X : the DM is indifferent between x and y}, I is an
reflexive and symmetric relation;

• For the semantic categories “ds”, “dt”, s, t ∈ {1, ..., q}, s ≤ t,
Pst = {(x, y) ∈ P such that the DM judges the difference of attractiveness
between x and y as belonging from the class “ds” to the class “dt” }. When
s < t, Pst expresses some hesitation.

Remark 1. In this paper, the relation P ∪ I is not necessarily complete.

Definition 1. The cardinal information on X is the structure {P, I, {Pst}s≤t}.

We will suppose P to be nonempty for any cardinal information {P, I, {Pst}s≤t}
(“non triviality axiom”) and P =

⋃

s,t

Pst. Remark that if the DM wants to say

that x is strictly preferred to y, but he hesitates completely on the category,
then he will write xP1qy.

A cardinal information{P, I, {Pst}s≤t} is said to be representable by a numeri-
cal function f : X → R+ if the following conditions are satisfied: ∀x, y, z, w ∈ X ,
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∀s, t, u, v ∈ {1, . . . , q} such that u ≤ v < s ≤ t,

x I y ⇒ f(x) = f(y), (1)
x P y ⇒ f(x) > f(y), (2)
(x, y) ∈ Pst

(z, w) ∈ Puv

}
⇒ f(x) − f(y) > f(z) − f(w) (3)

De Corte proved in [1] that the previous conditions are equivalent to the existence
of q thresholds σ1, . . . , σq such that:

∀(x, y) ∈ I : f(x) = f(y), (4)
∀s, t ∈ {1, . . . , q}, s ≤ t, ∀(x, y) ∈ Pst : σs < f(x) − f(y), (5)
∀s, t ∈ {1, . . . , q − 1}, s ≤ t, ∀(x, y) ∈ Pst : f(x) − f(y) < σt+1, (6)
0 < σ1 < σ2 < · · · < σq (7)

Note that in this representation, the relation (2) disappears so that relation P
is no more used explicitly. To know if a cardinal information {P, I, {Pst}s≤t} on
X is representable by a function f , we use the following linear program PL1:

PL1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Min f(x0)
s.t. f(x) = f(y), ∀(x, y) ∈ I (c1)

σi + dmin ≤ f(x) − f(y), ∀(x, y) ∈ Pij ,∀i, j ∈ {1, . . . , q}, i ≤ j (c2)
f(x) − f(y) ≤ σj+1 − dmin, ∀(x, y) ∈ Pij ,∀i, j ∈ {1, . . . , q − 1}, i ≤ j (c3)
dmin ≤ σ1 (c4)
σi−1 + dmin ≤ σi, ∀i ∈ {2, . . . , q} (c5)

where x0 is an alternative of X arbitrarily chosen, and dmin an arbitrary strictly
positive constant.

Now, when the cardinal information is inconsistent, i.e. the program PL1 is
infeasible, how to elaborate recommendations for the DM in order to have the
consistent judgements? A natural solution is to provide these recommendations
by using characterization theorems of the representation of a cardinal informa-
tion studied in [7,11,12]. But, all these theorems are based on the more complex
and specific cycle called “cyclone” [5], which would be difficult to grasp for a
DM. Our aim is to propose a new interactive method able to generate recom-
mendations for the DM when PL1 is infeasible.

3 Our Algorithm

3.1 Step 1: Find the Minimal Number of Constraints to Be Relaxed

To make PL1 feasible, we choose to relax some of its constraints which can cause
an inconsistency. To do this, we associate to each constraint l of PL1, a binary
variable βl allowing to know whether if the constraint l has to be relaxed or
not. The options x and y in constraint l are denoted by xl and x′

l. Then we find
the minimal number of constraints which we will relax by solving the following
linear program PL2:
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PL2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
∑

l∈N1,c

βl

s.t. f(xl)− f(x′
l) +Mβl ≥ 0, ∀(xl, x

′
l) ∈ I, l ∈ N1,r+ (c1′)1

f(xl)− f(x′
l)−Mβl ≤ 0, ∀(xl, x

′
l) ∈ I, l ∈ N(r++1),r (c1′)2

σi + dmin ≤ f(xl)− f(x′
l) +Mβl, ∀(xl, x

′
l) ∈ Pij , ∀i, j ∈ N1,q, l ∈ N(r+1),(r+p1) (c2

′)
f(xl)− f(x′

l)−Mβl ≤ σj+1 − dmin, ∀(xl, x
′
l) ∈ Pij , ∀i, j ∈ N1,q−1, l ∈ Nr+p1+1,c (c3′)

dmin ≤ σ1 (c4)
σi−1 + dmin ≤ σi, ∀i ∈ N2,q (c5)
βl ∈ {0, 1}, ∀l ∈ N1,c (c6)

where

• each constraint f(x) − f(y) = 0 of PL1 is replaced in PL2 by the following
two constraints:
(i) f(xl) − f(x′

l) + Mβl ≥ 0, 1 ≤ l ≤ r+ (type (c1′)1);
(ii) f(xl′) − f(x′

l′) − Mβl′ ≤ 0, r+ ≤ l′ ≤ r (type (c1′)2);
such that xl = xl′ and x′

l = x′
l′ . It is obvious that these two inequalities are

always satisfied when βl = βl′ = 1.
• M is a positive large number.
• r = r+ + r− with respectively r+ and r− the number of constraints of (c1′)1

and (c1′)2. r+ = r− is the number of constraints of type (c1).
• p1: the number of constraints of type (c2)′ corresponding to the number of

constraints of (c2) in PL1.
• p2: the number of constraints of (c3)′ corresponding to the number of con-

straints of (c3) in PL1.
• c = r + p1 + p2;
• ∀s, t ∈ N, s ≤ t, Ns,t = {s, s + 1, . . . , t}.

3.2 Step 2: Relaxation by Augmentation or Reduction by p
Categories

In this section, we show how to relax each constraint which has its binary variable
βl equals to 1. We suggest two types of relaxation: an increase or decrease of
categories and we justify this by the following:

1. Suppose that a preference (x, y) ∈ Pij causes an inconsistency in PL1. If the
modification of this judgement can restore the consistency, it seems natural
to ask the DM to adopt one of these two recommendations:
• If (x, y) ∈ Pij belongs to the set of constraints of (c3′), increase the

category j by replacing this preference by (x, y) ∈ Pij′ with j < j′;
• If (x, y) ∈ Pij belongs to the set of constraints of (c2′), decrease the

category i by replacing this preference by (x, y) ∈ Pi′j with i′ < i.
2. If an indifférence (xl, x

′
l) causes an inconsistency, then PL2 satisfies either

f(xl) − f(x′
l) < 0 or f(xl) − f(x′

l) > 0 (corresponding to βl = 1). Therefore
if the inequality f(xl) − f(x′

l) > 0 is satisfied in PL2, we recommend to the
DM to change (xl, x

′
l) ∈ I by (xl, x

′
l) ∈ P1p where p will be a category to be

determined.
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We need the following notation in the formal Definition 2 of relaxation by aug-
mentation or reduction by p categories:

• the judgement “(x, y) ∈ Pij” will be represented by the element (x, y, i, j) of
X × X × N1,q × N1,q;

• the judgement “(x, y) ∈ I” will be represented by the element (x, y, 0, 0) of
X × X × N × N.

Definition 2.

1. “ A reduction of the judgement (x, y, i, j) with p categories” is the substitu-
tion of this judgement by:
(a) the judgement (x, y, i − p, j) if (1 ≤ p < i);
(b) the judgement (y, x, 1, p) if i = j = 0.

2. “ An augmentation of the judgement (x, y, i, j) of p categories” (1 ≤ p ≤
q − j) is the substitution of this judgement by:
(a) the judgement (x, y, 1, p) if i = j = 0;
(b) the judgement (x, y, i, j + p) otherwise.

Using the previous notions, we distinguish two cases:

(i) The judgement is (xl, x
′
l) ∈ I:

– If the binary variable βl = 1 of PL2 is associated to the constraint
f(xl) − f(x′

l) + Mβl ≥ 0 derived from the preference (xl, x
′
l) ∈ I,

then the corresponding relaxation is a reduction of the judgement by
p categories. We denote by C1−1 the set of all “l” satisfying these
conditions.

– On the other side, if βl = 1 is associated to the constraint f(xl) −
f(x′

l) − Mβl ≤ 0 with (xl, x
′
l) ∈ I, then the proposition of relaxation

will be an augmentation of the judgement by p categories. We denote
by C1−2 the set of all “l” satisfying this type of conditions.

(ii) The judgement is (xl, x
′
l) ∈ Pij :

– If the binary variable βl = 1 of PL2 is associated to the constraint
σi + dmin ≤ f(xl) − f(x′

l) + Mβl, then we apply the reduction of the
judgement. Let us denote by C2 the set of all “l” satisfying this type
of conditions.

– If βl = 1 corresponds to f(xl) − f(x′
l) − Mβl ≤ σj+1 − dmin, then we

recommend an augmentation of judgement. Let C3 the set of all “l”
satisfying these type of conditions.

3.3 Step 3: Determination of the Number of Categories p Used in
the Relaxation

In this section, we suppose the set M of m constraints, which can cause an
inconsistency, have been determined through the linear program PL2. To know
for each element l of M , the number of categories necessary for its relaxation by
augmentation or reduction, we introduce the binary variables εl

k as follows:
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1. If the modification of the preference (xl, x
′
l) ∈ I requires an augmentation of

categories, we replace in PL1 the constraint f(xl) − f(x′
l) = 0 associated to

this judgement by the following constraints:
{

f(xl) − f(x′
l) ≥ 0

f(xl) − f(x′
l) ≤ σk − dmin + M εl

k, ∀k ∈ N2,q
(8)

Let h =
∑

k∈N2,q

εl
k.

– If h < q−1, then we recommend to the DM an augmentation of (xl, x
′
l) ∈

I with (h + 1) categories;
– Otherwise, we suggest him to remove the judgement (xl, x

′
l) ∈ I in the

cardinal information.
2. If the judgement (xl, x

′
l) ∈ Pij requires an augmentation of categories, we

replace in PL1 the constraint f(xl)− f(x′
l) ≤ σj+1 − dmin associated to this

preference by the constraints

f(xl) − f(x′
l) ≤ σj+k − dmin + M εl

k, ∀k ∈ N2,q−j (9)

Let h =
∑

k∈N2,q−j

εl
k.

– If h < q− j− 1, we recommend to the DM an augmentation of (xl, x
′
l) ∈

Pij by (h + 1) categories;
– Otherwise, we propose him to remove the judgement (xl, x

′
l) ∈ Pij .

3. If the preference (xl, x
′
l) ∈ I requires a reduction of categories, we replace

in PL1 the corresponding constraint f(xl) − f(x′
l) = 0 by the following

constraint
{

f(x′
l) − f(xl) ≥ 0

f(x′
l) − f(xl) ≤ σk − dmin + M εl

k, ∀k ∈ N2,q
(10)

Let h =
∑

k∈N2,q

εl
k.

– If h < q − 1, we suggest to the DM a reduction of (xl, x
′
l) ∈ I by (h + 1)

categories;
– Otherwise, we suggest to remove the preference (xl, x

′
l) ∈ I.

4. If the judgement (xl, x
′
l) ∈ Pij requires a reduction of categories, we re-

place in PL1 the corresponding constraint σi + dmin ≤ f(xl) − f(x′
l) by the

following:

σi−k + dmin ≤ f(xl) − f(x′
l) + M εl

k, ∀k ∈ N1,i−1 (11)

Let h =
∑

k∈N1,i−1

εl
k.

– If h < i− 1, we recommend to the DM a reduction of (xl, x
′
l) ∈ Pij with

(h + 1) categories;
– Otherwise, suggest him to remove (xl, x

′
l) ∈ Pij .
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The binary variables εl
k introduced in equations (8) to (11) are determined by

the following linear program PL3:

PL3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
∑

k∈N2,q ,l∈C1−1

εl
k +

∑

k∈N1,q−j ,l∈C2

εl
k +

∑

k∈N2,q ,l∈C1−2

εl
k +

∑

k∈N1,i−1,l∈C3

εl
k

s.t. SRelaxed constraints

SPL1 \ SPL1(m)

εl
k ∈ {0, 1}, ∀k ∈ N2,q, l ∈ C1−1

εl
k ∈ {0, 1}, ∀k ∈ N1,q−j , l ∈ C2

εl
k ∈ {0, 1}, ∀k ∈ N2,q, l ∈ C1−2

εl
k ∈ {0, 1}, ∀k ∈ N1,i−1, l ∈ C3

where

– SPL1 represents all the constraints of PL1.
– SPL1(m) represents a subset of SPL1 formed by the constraints associated to

the constraints of M build by PL2 that cause an inconsistency.
– SRelaxed constraints represents the system formed by all the constraints intro-

duced in (8) to (11).

3.4 Step 4: The Interaction with the DM

We have seen in the previous sections that, if the cardinal information given by
the DM is inconsistent, then the linear program PL3 is solved and its solution is
presented to the DM as recommendations to repair the inconsistencies. There-
fore, for each judgement (xl, x

′
l) ∈ (P ∪ I) causing an inconsistency, we suggest

him an augmentation or reduction of categories to make consistent judgements
representable by a numerical function f . Let R be the set of recommendations
(judgements with augmentation or reduction) proposed to the DM. In our algo-
rithm, the DM can adopt one of these two positions:

1. the DM does not agree with the recommendations proposed.
He builds a subset R′ ⊆ R of judgements for which he decides to conserve his
initial judgement. For each element (xl, x

′
l) of R′, the DM has no intention

to relax the constraint corresponding to (xl, x
′
l) in PL1. Therefore, the linear

program PL2 will be launched again by considering these constraints as
satisfied constraints (by removing their binary variables βl). There are two
possibilities:
(a) PL2 with these constraints has a solution. Then we compute the new

recommendations. We are thus either in situation 1 or 2.
(b) PL2 with these constraints has no solution. This means that the DM

cannot conserve R′ since they are inconsistent. He needs thus to change
R′.

2. the DM agrees with the recommendation proposed.
The linear program PL1 is launched again by taking into account the new
consistent cardinal information given by the DM.

The algorithm is represented by the Figure 1.
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Input: X, {P, I, {Pst}s≤t} Launching of PL1

Output: f PL1 feasible?

Launching of PL2 & PL3

PL2 feasible with R
′? Recommendations R

the DM gives R′ the DM agree with R

no

yes

yes

no

yes

no

Fig. 1. Interactive algorithm of dealing with inconsistencies

4 An Illustrative Example

X = {x1; x2; x3; x4; x5; x6}; q = 6. Suppose that the DM gives the fol-
lowing preferences: I = {(x2, x3); (x1, x6)}; P3 = {(x5, x6)}; P12 = {(x1, x3)};
P24 = {(x1, x5)}; P46 = {(x3, x5)}. The consistency of the cardinal information
{I, P3, P12, P24, P46} is tested through the linear program PL1:

PL1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min f(x1)
s.t.
f(x2) − f(x3) = 0
f(x1) − f(x6) = 0
σ3 + dmin ≤ f(x5) − f(x6)
σ1 + dmin ≤ f(x1) − f(x3)
σ2 + dmin ≤ f(x1) − f(x5)
σ4 + dmin ≤ f(x3) − f(x5)
f(x5) − f(x6) ≤ σ4 − dmin

f(x1) − f(x3) ≤ σ3 − dmin

f(x1) − f(x5) ≤ σ5 − dmin

dmin ≤ σ1, σi + dmin ≤ σi+1, i = 1, . . . , 5

For this test, we set dmin = 0.001 and we get PL1 infeasible. Therefore the algo-
rithm launches the linear program PL2 in order to find the minimal number of
constraints to be relaxed:
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PL2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
11∑

l=1

βl

s.t.
f(x2) − f(x3) + Mβ1 ≥ 0
f(x1) − f(x6) + Mβ2 ≥ 0
f(x2) − f(x3) − Mβ3 ≤ 0
f(x1) − f(x6) − Mβ4 ≤ 0
σ3 + dmin ≤ f(x5) − f(x6) + Mβ5

σ1 + dmin ≤ f(x1) − f(x3) + Mβ6

σ2 + dmin ≤ f(x1) − f(x5) + Mβ7

σ4 + dmin ≤ f(x3) − f(x5) + Mβ8

f(x5) − f(x6) − Mβ9 ≤ σ4 − dmin

f(x1) − f(x3) − Mβ10 ≤ σ3 − dmin

f(x1) − f(x5) − Mβ11 ≤ σ5 − dmin

dmin ≤ σ1, σi + dmin ≤ σi+1, i = 1, . . . , 5
βl ∈ {0, 1}, ∀l ∈ {1, . . . , 11}

The solution gives β4 = 1 and βl = 0 for l 
= 4. So the only constraint which
need to be relaxed is f(x1) − f(x6) = 0 and its relation corresponds to an
augmentation of p categories of the judgement (x1, x6) ∈ I. The number p is
given by PL3:

PL3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
6∑

l=2

εl

s.t.
f(x2) − f(x3) = 0
f(x1) − f(x6) ≥ 0
f(x1) − f(x6) ≤ σ2 − dmin − Mε2

f(x1) − f(x6) ≤ σ3 − dmin − Mε3

f(x1) − f(x6) ≤ σ4 − dmin − Mε4

f(x1) − f(x6) ≤ σ5 − dmin − Mε5

f(x1) − f(x6) ≤ σ6 − dmin − Mε6

σ3 + dmin ≤ f(x5) − f(x6)
σ1 + dmin ≤ f(x1) − f(x3)
σ2 + dmin ≤ f(x1) − f(x5)
σ4 + dmin ≤ f(x3) − f(x5)
f(x5) − f(x6) ≤ σ4 − dmin

f(x1) − f(x3) ≤ σ3 − dmin

f(x1) − f(x5) ≤ σ5 − dmin

dmin ≤ σ1, σi + dmin ≤ σi+1, i = 1, . . . , 5
εl ∈ {0, 1}, ∀l ∈ {2, . . . , 6}

A solution of PL3 gives ε2 = ε3 = ε4 = 1 and ε5 = ε6 = 0. Therefore we
suggest to the DM an augmentation of (x1, x6) ∈ I by 4 categories, i.e. replace
(x1, x6) ∈ I by (x1, x6) ∈ P14. The DM accepts this recommendation and the
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new cardinal information I = {(x2, x3)}; P3 = {(x5, x6)}; P12 = {(x1, x3)};
P14 = {(x1, x6)}; P24 = {(x1, x5)}; P46 = {(x3, x5)} becomes consistent.
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